AJIAA JOURNAL
Vol. 31, No. 4, April 1993

Refined Shear Deformation Theory of Laminated Shells

Hung-Sying Jing* and Kuan-Goang Tzengf
National Cheng Kung University, Tainan, Taiwan 70101, Republic of China

This paper establishes a refined approach for analyzing the effect of shear deformation in thick laminated
anisotropic shells using a mixed formulation based on the functional proposed by Jing and Liao. The displace-
ment field uses a zigzag function in addition to the Reissner-Mindlin type in-plane displacements and a constant
transverse deflection. The effect of transverse shear deformation is included through an independently assumed
transverse shear stress field. The initial curvature effect, which should not be neglected in thick shells, is included
in the strain-displacement relations, stress resultants, and the assumed shear stress field. The governing
equations are obtained by taking variations of the functional with respect to the displacements and transverse
shear. The equations of motion of a general shell are given. Typical examples of thick laminated cross-ply
cylindrical panels under cylindrical bending are given to illustrate the accuracy of the present refinement. From
the examples investigated, it is concluded that the present theory can supply, with only seven equations,

reasonably good resuits.

Introduction

IBER-REINFORCED composites have been widely used

in different industries because of their low weight and
high strength. Among the different kinds of applications, the
most important are laminated plates and shells. To be able
to use composites with confidence, many researchers have
developed theories to predict accurately their behavior under
static and dynamic loadings. Up until now, most of the effort
was concentrated on the laminated plates. Some instructive
review articles can be found in the literature.’** For shells,
more and more studies have been made in recent years. The
most general approach used in the literature is that which uses
the principle of virtual work in conjunction with a pre-as-
sumed displacement field. Derived from thin shell theory, the
classical lamination theories for shells based on Kirchoff-Love
postulates are adequate to predict the gross response of rela-
tively thin laminates. A good survey of the different classical
lamination theories can be found in the work of Naghdi® and
Ambartsumyan,$

Owing to the high ratios of in-plane Young’s modulus to
transverse shear modulus of the most used composite materi-
als, the influence of transverse shear deformation, which is
not included in the classical lamination theories, cannot be
neglected in certain cases. Also, when the laminates become
thicker, the transverse shear effect has to be incorporated. As
a result, numerous first-order and higher order shear deforma-
tion theories have been proposed for multilayered anisotropic
shells.”!® By satisfying zero shear strains on the top and
bottom surfaces, alternate higher order theories have been
proposed for laminated shells.!!-’2 Recently, Noor and Bur-
ton'? summarized the research on the shear deformation theo-
ries for multilayered composite shells.

For the analysis of thick shells, in addition to the transverse
shear deformation, the initial curvature effect also has to be
considered, as indicated by Voyiadjis and Shil* for isotropic
materials. In shell structure, the curvature for each parallel
surface through the thickness of the shell is different. There-
fore, the curvature of a surface located at a distance z from
middle surface, whose curvatureis 1/R, is 1/[R(1 + z/R)}. To
consider the initial curvature effect, the term 1 + z/R has to
be included. The importance of this effect is obvious when
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z/R is of the same order as 1. The incorporation of the initial
curvature results in nonlinear distribution for the in-plane
stresses along the thickness and unsymmetric stress resultants.
Both of these are essential features of thick shells and should
not be ignored for an accurate and reliable thick shell theory.
The aforementioned theories, classified as displacement-
based theories, will in general violate the condition of traction
continuity at the layer interfaces unless they employ specially
designed displacement fields.!>!% To overcome this drawback,
other types of theories!”'® were proposed, based on either
Reissner’s!® mixed variational principle or the functional of
Jing and Liao.?® The survey of the analysis of multilayered
composite shells using Reissner’s mixed variational principle
was done by Grigolyuk and Kulikov.?! Jing and Liao’s func-
tional, modified from the Hellinger-Reissner principle by sep-
arating the stress field into a flexural part and a transverse
shear part and leaving only displacements and transverse shear
stresses as independent variables, has been used to analyze
laminated plates with satisfactory accuracy. These analyses
showed that with independently assumed transverse stresses or
shear, instead of using displacements only, it is more accurate
to consider shear effect. Although Reissner’s and Jing and
Liao’s functionals are similar, they are not identical. The
difference between the laminated plate theories derived from
these two functionals was studied by Jing and Tzeng.?
Although the aforementioned shear deformation theories
can yield reasonably good results for deflections, vibration
frequencies, and buckling loads, they do not accurately pre-
dict through-thickness distributions of deformations and
stresses. From studies for laminated plates, it was found that
the zigzag displacement field suggested by Murakami'’ can
improve the in-plane responses even better than most higher
order theories. Consequently, in the present study, this type
of displacement field, combined with Jing and Liao’s func-
tional, is extended to the analysis of thick laminated an-
isotropic shells to include the effect of shear deformation. In
the present refinement, the exact three-dimensional elasticity
is used to formulate the strain-displacement relations instead
of using power series?>?* to incorporate the initial curvature
effect. Moreover, the same effect is also included in the stress
resultants. In addition to the displacement field of the Mu-
rakami type, two transverse shear stresses are assumed a pri-
ori. The interface traction continuity condition and traction
boundary conditions on the outer surfaces can thus be satis-
fied without difficulty. After performing the stationary opera-
tion of the functional, the resulting governing equations will
include the equations of motion, compatibility of transverse
shear, and consistent boundary conditions. The numerical
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results presented here for the laminated cross-ply circular
cylindrical shell panels are compared. with three-dimensional
elasticity solutions?® to show the accuracy of this refined
mixed approach.

Theoretical Development

The curvilinear orthogonal coordinates (£¢;, £, £;) of the
shell are introduced. Here £; = 0 represents a surface defined
by (¢, &) coinciding with the lines of principal curvature of
the middle surface. The £; is defined to be along the straight
line normal to the middle surface. Under this definition, the
- length of the linear element is

dS? = AM(1 + ki&3)? dE] + AJ(1 + Kx$3)? dgf +dE5 (D)
and the element of volume is
AV = A1 4,1 + ki&3)(1 + kafs) d&; dE, dEs 2

where A, = A&1, &) are coefficients of the first quadratic
form of the middle surface, and k, = k, (£,, £,) are principal
curvatures of the middle surface along the lines £, = const,
£, = const, respectively. The area of an infinitesimal rectangle
on edge surface S, is

dS, = H(&,) d&; ds; 3
where

H(E) = {[n(1 + kiga)P + (1 + kot

In the previous formula, »; and », are the direction cosines of
the curve C, which is the intersection of the middle surface and
edge surface S, and s; is measured along the curve C.
Consider a laminated composite shell consisting of N per-
fectly bonded homogeneous anisotropic elastic layers whose
principal axes coincide with curvilinear orthogonal coordi-
nates &,, &5, and £;. Each layer of the composite has one plane
of elastic symmetry perpendicular to the thickness direction.
In the following derivation, (), k =1, 2, . . ., N, represents
the quantities corresponding to the kth layer. The thickness of
the kth layer is denoted by A, and # is the total thickness of
the shell, as shown in Fig. 1. Unless otherwise stated, the

Fig. 1 Shell coordinates, geometry, and lamination.

common Cartesian indicial notation is used where Latin and
Greek indices range from 1 to 3 and 1 to 2, respectively.
Repeated indices do not denote the summation convention,
and (),; represents partial differentiation with respect to £;.
For simplicity, a subscript = is introduced. Its value is 1 when
a=2and 2 when e = 1. .

The strain-displacement relations of the kth layer, derived
from three-dimensional elasticity, including the initial curva-
ture effect, is of the form

1 T

® = e Ry kudP 4
b = 1 ks [ A, T TAA, 3 (“42)

el = 1 [% — A1’2u1(k)] + 1 [E@ _ Az,luz(k)]

12 1+ klfg Al A1A2 1+ k2E3 A2 A1A2
(4b)
o = ufy )
(0
o= [53— - kau;k’] +ugh (4d)
C 1+ k| Aa

Having one plane of elastic symmetry, the constitutive equa-
tions of the kth layer can be separated into two equations and
stated as

(3 k K
on @ Cy Cp Ci3 Ci @ en @

o _1Cu Cnp Gy Cy en (5a)
033 Cy G Cp Gy €33
032 Cis Cx G Ces €12

{em} w [Su S12] ® {713} ® (5b)

e Sz Sl (2

where C;; and S;; stand for the elastic moduli and compliance.
In the present theoretical development, a displacement field

proposed by Murakami, having continuous piecewise linear

in-plane displacements and a constant transverse deflection

through the shell thickness is employed to formulate the mixed
theory. The displacement field is expressed as folows:

”ék)(fh £2, £3) = Un(§1, &) + E3VulE1s £2)

2
+(-1F Y EPS.(1, £2) (6a)
k
ufP(E1, &2, &3) = Uséy, £2) (6b)
where
Weh-th s

represents a local £3 coordinate with the origin at the center of
the kth layer: £. It should be noted that there are seven
independent variables U;, ¥,, and S, in the previous displace-
ment field, regardless of the number of layers.

The transverse shear stresses are assumed as

k) £k
T(/cg:Lé)f;)_
24

(Kye—1) (k) k)
T fogp UL P @

where

3
S =g A=), pP =1+ 05

1 1G]
A =53
(s

© R +ER

and R, denotes the principal radii of the coordinate lines on
the middle surface. In Eq. (7), Q% represents the parabolic
part, with the initial curvature effect of shear force in o
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direction of the kth layer. T is the value of the transverse
shear in the « direction and at the kth interface. The assumed
transverse shear stress is composed of three parts. They are
one parabolic term, including initial curvature effect, and two
linear terms. Of the two linear terms, one is from the contribu-
tion of the traction at the upper surface whereas the other is
from the lower surface. With this type of assumed stresses, the
different kinds of transverse shear distributions in laminated
shells, as long as these are piecewise parabolic, can all be
modeled with satisfactory accuracy. It should be noted here
that the transverse shear stresses satisfy the requirements

=Y k=1,2...,N—-1 ®
which are the conditions of traction continuity at the layer
interfaces, and

h
TSB = Tot+ at 53 = E (9a)

= T_ at 3= —= (9b)

Of course, T,/ and T, o are the prescribed tractions on the top
and bottom surfaces in the « direction. Using Egs. (7) and (9),
the traction boundary conditions are satisfied, i.e., TO = T,
and T = =T, . In the present theory, only two transverse
shear components are assumed, unlike Reissner’s formulation
in which transverse normal as well as transverse shear have to
be assumed a priori. It makes the derivation presented here
much more simple as can be seen in the previous studies for
plates.?? In fact, unless the value of the deflection wavelength
is close to that of the thickness, the contribution from the
transverse normal stress can usually be neglected. _

The purpose of this paper is to develop a mixed theory that
accurately includes the effect of transverse shear deformation.
To complete this analysis, Jing and Liao’s mixed variational
principle is applied to N-layered composite laminated shells
whose middle surfaces occupy domain A4 in the £, and &,
directions, i.e.,

t N
T (B ety + orras + s
tg ANk=1J¢

—SHr® — SOr®) + 5P +

(5 (3 0, (k
81275 3(% - 51(2)7'(13) ( ) %’]

—p®uP 6P 1(1 + k1£)(A + kyEs) dEs)AlAz dg, dfz] dr

5] N
- S U g [Ej SufP (U + ki1 + kots) dgs

114 ALk=1Jo®

h kih koh
+6ui(l)<£l’ EZa 5>T‘l+ (] + —12—><] + L2>
h\ kih ol

N _M\p-(1 80V "

+ ou <81,€z, 2>T, <1 2><1 2)]

X A4, d&; d&,

N
+§ [Ej 8up;H (&s) dsg] ds,} ar (10)
aC, 1J Q&)

LK

where repeated indices denote the summation convention, 4C,
denotes the part of traction prescribed on curve C, p; stands
for prescribed traction in / direction, Q® is the £; domain
occupied by the kth layer, £ is the body force of the kth
layer in i direction, and p® is the density of the kth layer.

By introducing Eqgs. (4), (6), and (7) into Eq. (10) and taking
-yariation with respect to the independent variables U;, ¥,, and
S and the transverse shear, the following equations of mo-
tion, transverse shear compatibility, and boundary conditions
are obtained.

Equations of motion:
(AN1) 1 + (AN 2 + (= 1)#Ag 1 Nog + (— 1% !4} N1y

kkzh2
+ koA1ANG + A Ay | BE+(T) — TN L+ —— 1

F (T +T)) (ki + kh kZ)h]

2
= A, A;(LU, + LY, + [S) (11a)

(A:N13),1 + (A1 N23) 2 — A A (kN1 + kaNy)

k1k2h2

+A1A2 B3 +(T3 - ) l+ 4

ky + ko)h
+ (T3 + T3) (——‘—zljl
= A,A,LU, (11b)

(AsMy ) + (A M) 2 + (— 1)%Az Moy + (= 127 1A M),
h kik,h?
- AlAZNa3 + AIAZ[B'S + '5 (Ta+ - Ta—)<1 + _1‘22__)
‘ ky + ky)h?
PN () ]
4

= A, AyLU, + ¥, + LS,) (11¢)

(AzL1) 1 + (A1Log) 2 + (= 1)%Ag 1 Log + (= D ¥ 1AL,

o[ Rk
~ A1AK 3+ A1A) BE— [T — (- D)VT] 1+—4-—

ki + k)h
wiry + (- oy R > 2 }
= A, AU, + ¥, + IS) (11d)

where the variables are defined as follows:

N

(NaB’ Maﬁ’ Lmﬁ) = kzls © 0&’2(1 + k7r£3)|:1a ES’ (_ l)k
=1JQ .

x 2 23")] dgs (12a)
e
N

(NaJ) Ka3) = E j (k)(l + k7r$3)l: (_ l)k
o)

X2 (1 + kas%’)] dts (12b)
Ay
N 2
(Il» 12: 13’ 14, 15, 16) = E X p(k)[ly 53(_ l)k e Egk), Sg’
k=1J0® hy
(- ¥ 2 £3£90, iz ES")Z] (A + kig)(1 + kafs) A&y (12¢)
Ry hj;

N 2
(Bf, B, Bf)= ¥ § [1, (-1 - S%"’}
k=1J0® . hk
X (1 + ki)l + kafa)f 0 dés (12d)

It should be noted that the initial-curvature effect is included
in the previous stress resultants. There are seven equations in
total. The first two equations, (11a), imply the balance of the
in-plane forces in &, and &, directions. The third equation,
(11b), represents the force balance in the transverse direction.
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Equations (11c) are moment equations. The last two equa-
tions, (11d), are equations of motion corresponding to the
assumed zigzag displacement field.

Transverse shear compatibility:

o ® K
(32 () o ('
1141 1 a,
S12b1>(k) <312b3>(k) <31’Yl >(k)
+le—) ™¥V+ (=) =" (13a)
<Sua1 : Sua : Sna

[S{* Db{<* DO{E D + S{PbO)
+ISE OB IOE Y 4 SHBOOL]
- {Sl(lf)dék)Tl(k,_ D4 [SI(IIHL 1)d1(k+ D4 Sflf)dgfk)]
x T + ik+Dgge+ 1)ffk+ Dy 4 (SWIPTE-D
+ [S1(12f+ l)dl(k+ 1) + Sl(lzc)d§k)] Ték) + SI(IZ(+ 1)d2(k+ 1)T2(k+ 1)}

= oDy D 4 ofOy {0 (13b)

S12”3> ® (k) k <S12b2> @ S12b4 ®
— + (k) + | ——= T(k— 1 + | — T(k)
<Szzaz o+ O Spay ! \Sna, !

+ (ﬁ)(k) Tz(k_ Y] + (ﬂ)(k)Tz(k) = (ﬂ)dﬂ (13C)
az a; Sna
IS5 b{ 0+ D + SPHPO)
+ 1Y Vb DOE D 4 SWHIOM)
+ (SWAPTE=D + [SE* Vdk+D + SHAP)
x T 4 S+ g+ DTk+Dy 4 (gWgoTk-1
+ [Sz(§+l)d1(k+l) + SWAPN T + S+ D+ DT+ 1Dy
= cf DD + Oy (13d)

where

Us o 2
O =22~ kUp+ Wat (= DF (1 + k1S,
A hy

2

where a®, d®, b®, cP(j =1~ 4), and e are expressed in
Eq. (Al). In Egs. (13a) and (13c¢), &k ranges from 1 to N, and
in Egs. (13b) and (13d), & ranges from 1 to N— 1. The terms
0% and T® are expressed in terms of ¥% and v** Y, Physi-

cally, Eqs. (13a-13d) represent compatibility of transverse

shear. That is, they are the variational relations between trans-
verse shear stresses and displacements.
Boundary conditions:

Specify U; or Ngivg (14a)
Specify ¥, or Mg (14b)
Specify S. or Lgovg (l4c)

where repeated indices are the summation convention. The
previous equations represent the displacement and force
boundary conditions.

From Egs. (4-6) and Eq. (12a), the in-plane stress resultants
can be formulated as functions of U, ¥,, S,, and their deriva-
tives. On the other hand, with Egs. (7), (8), and (12b), the
transverse shear stress resultants can also be derived as func-
tions of U;, ¥, and S,. After substituting these equations into
the equations of motion, Egs. (11a~11g), and boundary condi-
tions, Egs. (14a-14c), a complete set of governing equations
and the boundary conditions in terms of displacement vari-

ables can be formulated. If the external loading is further
prescribed, it is then possible to find the solution of the
resulting problem.

Cylindrical Bending of Laminated Cylindrical Panels

The coordinate system (£1, £, £3) is now replaced by the
usual notation (x,7,z), in which x = A\d§, and y = Axdé,.
The panel is simply supported at the boundaries along y =.0
and y = b and is infinitely long in the x direction, as shovyn in
Fig. 2. The first fundamental form and curvatures of a circu-
lar cylindrical shell are

1
ki=0, kp= 15)

where R is the mean radius of the cylindrical panel. The
traction boundary conditions on the outer surfaces are

where b = R¢. The cylindrical bending problem of laminated
cross-ply cylindrical panels considered here is independent of
the longitudinal coordinate x. The quantities Uy, ¥,, and S,
are zero.- With Egs. (15) and (16), the seven equations of
equilibrium, Egs. (11a-11g), can be reduced to

N, . N, h .y
N,y + —I';E =0, Nyzy — E— + <1 + §>qosm —2)— =0
: an
M, —N,; =0, L,,-K,;=0
The corresponding boundary conditions are
Ny=M,=L,=U;=0 a1s)

The simplified expressions for the stress resultants become

N, Gy F»n Ej U,,+U/R
M,r=|Fy Ppn On ¥y,
L, Ey QOn Zn Sy

{Nﬂ} [G{'{ G{';] {Uw-— U,/R + \I/yz
K, )| Gy G S,

Fig. 2 Cylindrical shell coordinates and geometry.
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Fig. 3 Effect of S ratio on the deflection with Ez /Er = 25.
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Fig. 4 Effect of material anisotropy on the transverse deflection with
S =10.

where

N N
Gp= ngl CRgo, Fy= ngl CHn (& + cio)

N
E22 = 2R E (_ l)kCZUZC)gl
s (20)
Pyu=RY, CBhEE, + 28 + c%y)
k=1

N N
On= 2Rk;1 (— 1)CPhe(@, + c81), Zn= 4Rk;1 cHé
and
Gii =g +mlfi, G =g+ mlf,

* *
G = g +mify, Gy =1H8g+mif

@n

i, f)=(F, A — B) '(Fip1 — 41, Fip2~ o)

&L g8)=(p—Afi,p2— AL S)

where ¢ = z{¥/hy. The constants &, g, and & are listed in Eq.
(Ala), and the matrices {1, mZ, 4, B, F\, p,, and ¢, are
expressed in Eq. (A2).

Since the loading is of the sinusoidal type, by satisfying the
boundary conditions, the Navier-type series solutions for
static response can be given as

U,, ¥,, 5,) = (U,, ¥,, 8,)cos %y, U, = U,sin %y 22)
Substitution of Egs. (19) and (22) into Eq. (17) yields a set of
four linear algebraic equations in terms of the unknown con-
stants U,, U,, ¥,, and §,, which can be expressed in matrix
form:

Vé=F (23)

where the column matrices &7 =[U, U, ¥, 5,1 and
FT=[0 g4(1 + h/2R) 0 0]. The components of matrix ¥ are
listed in Eq. (A3).

Numerical Examples

To assess the accuracy of this approach to the static analysis
of a thick laminated panel, an example with the elasticity
solution is used. For ease of comparison, the following lami-
nae material properties, geometry, and loading condition are
employed:

EL = 25ET, GLT = O.SET, GTT = O.ZET, ViT = 0.25

vrr = 0.49, Er=1Xx 106 psi,
29

b=—in, T, = qosinIb)—/

where L denotes the direction parallel to the fibers, T the
transverse direction, and v,y the Poisson ratio, measuring
strain in the transverse direction under uniaxial normal stress.
The laminated shell under consideration is a three-layer [90
deg/ 0 deg/90 deg] infinitely long cylindrical shell with simply
supported edges, and the loading is of a sinusoidal type. For
comparison, the deflections and stresses are normalized as

1 b 1 '
- — __’ , - = . 0’
» qoS* oy<2 z) s QoS 70, 2)

_ 100Er _ 10E; b
o, = m uy (0, z2), @, = m u,,(E , 0 (25)

S:

N
I

R
h’

N

where u, and u, stand for displacements along the y and z
directions. Figure 3 gives the comparisons of the transverse
deflections from classical shell theory (CST), first-order shear
deformation theory (FSDT), the present approach, and the
exact theory. In this figure, the ratio S ranges from 4 to 50.
The reason for choosing varied S is to assess the effect of shear
deformation. As S decreases, the shear effect is more pro-
nounced. As can be seen in this figure, in this range the present
approach gives very good results when compared with the
elasticity solutions.

Besides the thickness of laminated shells, the ratio E;/Er,
which is the other parameter controlling the effect of shear
deformation, is also used to evaluate the present approach.
The comparisons are given in Fig. 4. In this case, § = 10 is
used. The discrepancy between the present approach and the
elasticity solution is not substantial. The studies with different
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Table 1 Comparisons of nondimensionalized deflection
and stresses for various theories vs exact

Theory i,(b/2, 0) ay(b/2, £ h/2) Ty2(0, 0)
4 Exact 0.458 - 1.360 0.476
- 1.772
Present 0.459 1.205 0.511
~ 1.550
HSDT2 0.382 1.117 0.326
- 1.406
FSDT® 0.342 0.732 0.225
- 0.824
CST¢ 0.0781 0.732 —_—
- 0.824
10 Exact 0.144 0.898 : 0.525
—0.993
Present 0.142 0.870 0.574
- 0.96
HSDT 0.128 0.829 0.340
-0.88
FSDT 0.120 0.759 0.225
-0.796
CST -0.0777 0.759 . e
-0.79 ‘
50 Exact 0.0808 ‘ 0.784 0.525 .
. : —0.800 ]
Présent 0.0802 0.781 - 0.576
=0.797
HSDT 0.0796 . 0.774 0.328
; =0.789
FSDT 0.0793 0.774 0.225
- 0.781
CST 0.0776 0.774 e
) - 0.781
100 Exact 0.0787 0.779 0.523
- 0.786
Present 0.0780 0.778 0.574
- 0.786
HSDT 0.0781 0.770 0.334
-0.787
FSDT 0.0780 0.776 0.225
» -0.779
CST 0.0776 0.776 _—
-0.779

2HSDT: higher order shear deformation theory.!?
YFSDT: first-order shear deformation theory.’
¢CST: classical shell theory.

values of S, up to S =4, have also been performed. The
comparisons are all very similar to those shown in Fig. 4.

In addition to the deflection, the bending stress and trans-
verse shear are also given in Table 1. Besides CST, FSDT, and
the elasticity theory, results from higher order shear deforma-
tion theory!? (HSDT) are also included for comparison. In
their analysis, a special displacement field satisfying zero
transverse shear on top and bottom surfaces of the shell is
used. The results are from finite element analysis. In Table 1,
the values of S used are 4, 10, 50, and 100. As shown in this
table, the present approach generally gives better results than
this higher order shear deformation theory.

To further evaluate the viability of the present approach,
the through-thickness distributions of deformations and
stresses are also analyzed and compared with other theories.
Figure 5 gives displacements i1, along the circumferential di-
rection for S = 10. This figure shows that the present ap-
proach gives results quite close to the elasticity solutions.
Through-thickness stress o, along the circumferential direction
from different theories are plotted in Fig. 6. Again, very good
comparisons are shown between the elasticity and present
approach. Because the results of &, from FSDT are identical to
those from CST, they will not be shown in Figs. 6, 8, and 11.
Figures 7 and 8 show the same comparisons but with different
geometry. In this case, an R/h =4 shell is used. The other
parameters remain the same. Good comparisons between the
present approach and the elasticity are maintained.

In many problems related to composites, the transverse
shear stresses are very important. Figure 9 shows the through
thickness transverse shear 7,,. Since the traction-free condi-
tions on the top and bottom surfaces and the continuity condi-
tions along interfaces are satisfied in the assumed transverse
shear fields, unreasonable discontinuity phenomena do not
show up in the present approach. The comparison between the
elasticity and the present approach is acceptable. Unfortu-
nately, discrepancies can still be found along the interfaces. It
should be noted here that the transverse shear stresses along
the upper and lower interfaces differ. Without the initial cur-
vature effect, the analysis from Dennis and Palazott!? ob-
tained the same values along these two interfaces, as can be
seen in Fig. 9. Since the initial curvature effect is included in
the assumed transverse shear stress field [Eq. (7)], the same
tendency as in the elasticity solution is revealed in the present

z
05 -
Exact
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Fig. 5 Variation of circumferential displacement i1y(0, z) through
laminated thickness of three-layer cross ply {90 deg/0 deg/90 deg]
with S = 10.
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Fig. 8 Variation of circumferential stress d,(b/2, z) through lami-

nated thickness of three-layer cross ply [90 deg/0 deg/90 deg] with
§=4.

analysis, suggesting that to incorporate the initial curvature
effect is a must.

To further understand the behavior of the present ap-
proach, additional studies are done. Figures 10 and 11 show
similar comparisons from different theories. The only differ-
ence is that the number of layers is increased to five and the
stacking sequence is [90 deg/0 deg/90 deg/0 deg/90 deg]. In
these figures, S =4 is used. The displacement and in-plane
stresses are compared with those from elasticity theory and
again the results are acceptable.

From the previous analysis, the agreement between the pre-
sent approach and the elasticity solution is shown to be accept-
able. The reasons are thought to be as follows. The zigzag
shape of displacement is a good displacement field to model
through-thickness displacement. Also, the shape of assumed

_displacement is found to be very important to a successful

modeling. The second reason is the mixed formulation. The
assumed transverse shear field makes the shell more shear
deformable, resulting in more chance of approaching the elas-
ticity solution. The present study also found that the results of
an analysis with an identical displacement field but without
transverse shear are worse than those given in the previous
figures. Mixed formulation does improve the performance of a
theory to some extent. The third reason is thought to be due to
the incorporation of the initial curvature effect in the present
formulation. As the thickness increases, the term (1 + z/R),
usually neglected in most shell theories, becomes more impor-
tant. The initial curvature effect is implanted in the strain-dis-
placement relations, stress resultants, and the assumed trans-
verse shear fields, contributing to the good comparison shown
in the present study.
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Fig.9 Transverse shear stress distribution 7,;(0,z) through lami-
nated thickness of five-layer cross ply [90 deg/0 deg/90 deg] with
S=4.
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Conclusions

A mixed approach for considering the effect of shear defor-
mation for thick multilayered anisotropic shells is presented in
this paper. The approach makes use of Jing and Liao’s func-
tional with independently assumed displacements and trans-
verse shear stresses. In the present formulation, the number of
governing equations is independent of the number of layers.
The governing equations for general shells are obtained. From
the examples studied here, some conclusions can be made.

1) The present mixed approach works well to model the
cylindrical bending behavior of thick shells up to S = 4.

2) The zigzag type of assumed displacements is a good
approximation even for laminated shells since it can model the
zigzag through-thickness behavior of laminated structures.

3) This mixed approach yields more reasonable through-
thickness distribution of shear stress for laminated shells as
well as for laminated plates. Moreover, it is not necessary to
introduce shear coefficients in this approach.

4) Although the zigzag function in addition to the Reissner-
Mindlin type of displacements can improve the in-plane re-
sponse, the bending stresses are still linear. From exact solu-
tions, it is found that the in-plane stresses are nonlinear
functions of thickness. The initial curvature effect in strain-
displacement relations can make certain improvements in this
aspect.

5) The initial curvature effect in stress resultants cannot be
neglected for thick shells. Otherwise, when it is combined with
the strain-displacement relations, the final stiffness coeffi-
cients will be underestimated.

6) Inthe assumed transverse shear stress field, the contribu-
tion from the initial curvature effect is also very important, as
can be seen from the stress values at the interfaces and the
distributions through the thickness.

Appendix
The coefficients a®, d®, bP, ¢P(j =1~ 4), and ¥
appearing in Eqgs. (13a-13d) are

Sk, k
w_ Skl o
a’= 457 b, (&1 — 883 + 16g5 + d(§o — 82, + 1684)]
w _ Sk,

a2)=m[fl—8fa+16f'5+5(f[)—8f'2+16ﬂ)]

w__ Skiks
B Sk®rfon,

bl(k)_3k1k2hk( . a) b = 3k1k1hk< z_;)

2k \30 " 3 k® 3
(k)_kzh"<1 9 mﬁkh"(lz ;) (AD
oD (g

@+b
© = ko
a7 =kks [30 12 +3]

1 @+5b) dab
4 = kykoh}| — — “
30T T2 T3
ks, ky
[(3 R ky — 1
e’ = kék) eZ( )= kl(k)
where
" o d—2n+l . o —5_2”
h= B o 77,5 e
_ a~—2n+1 _5—2n

A= ¥

e £ whmey A B momes
g0=n=1é...ﬁ%%1jﬁ’ g1=n=1.i::....22';2€’-"2'n1)

(Ala)

where @ = 1/k{Ph, and b = 1/k{Ph,. .
The matrices £, mI, A,, By, Fi, po, and g, appearing in
Eqgs. (21) are

ell XN = [ef". .. ], gl XN AaerV. .. \e)™]
mlTlxN—l =g/, m2T1><N-1 =qf
0
AleN—l = | (b/a)® (bs/ar)®
0
Fiy_yn=| Suby® (Sxnby)k+ D
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B,

~IxN-1

0
(S2d)®  [(Spd)® + (Snd)** V] (Spd)*+V | (A2)
0

-2 62T

Pinx Snay /)77 \Sua
) @)

Pay Spa; T Spa;

T
l 1 - . '
Gy 11 =P+ eV 4 W

T
Dy 1x1 = [0\204)(‘) + (0@ - - eV + (>\202)(N)}

where AP = (— D42/h)A + z§9/R).
The constants a§®, b{®, bR, cf9, dP, d¥, d{, and e in
Eqgs. (A2) for cylindrical shells are shown as follows:

_6IR +z{" _R+zlY K

@ po.
“ SRk, 7 2R 20R
[R+2z{ A Ry
b = # - ‘20_kR , o =k cfo = b
(o 2 *r
ap = R | A dz(k)_.:M]_hk
3R 12R 6R
ato - IR+ 200 B e® = 1
’ 3R 12R° 7

The components of matrix ¥V in Eq. (23) are
vii = ¢*Gp + r*Gi, via= —qr(Gu + G))
Vis = q%Fp — 1Gfi,  Vie=q*En—1Gf3, V=V
v = q*Giy + r*Gn, vy =q(Gii — rFp)
Vo= q(Gy— rEp), V3=V, Yn=Vn (A3)

* *
viz = g?Pp + Gii, Via=q’0n+Gp

Va1 = §*Ep — 1G3i,  Vaz = q(Gy1 — rEp)

* *
Va=q*Qn+ Gy, Vu=q2p+Gy, r=—, q=

x| -
S
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